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Abstract—The object of this investigation is to study various approximate methods of analyzing infrared
radiative heat transfer in nongray nonisothermal gases. For this purpose, a very simple physical system .
was chosen consisting of a gas bounded by two infinite parallel black plates having the same uniform
temperature. There is a uniform heat source (or sink) within the gas. Furthermore, attention is restricted
to gases having a single fundamental vibration—rotation band; that is, diatomic gases.

It is found that for intermediate optical thicknesses, the line structure of the vibration-rotation band
can have a significant effect upon the temperature distribution within the gas. Predictions based on the
gray gas assumption are shown to be greatly in error. It is further illustrated that one cannot apply the
optically thick limit to an entire vibration-rotation band, since there will always be an optically non-thick
region in the band wings, and such regions will contribute significantly to the radiative transfer process.
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NOMENCLATURE
total band absorptance [cm™!];
band width parameter [cm™'];
line width parameter [atm™!];
correlation parameter [atm ™! cm™1];
total black body emissive power
[W/em?];
Plank’s function [W/cm?/cm™1];
Plank’s function evaluated at tem-
perature T, ; '
Planck’s function evaluated at wave
number ,;
exponential integral ;
distance between plates [cm];
pressure [atm];
total radiation heat flux [W/cm?];
spectral radiation heat flux [W/cm?/
cm™'];
heat source or sink [W/cm?];
total band intensity [atm ™! cm~2];
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T, temperature [°K];

T,, wall temperature;

u, dimensionless coordinate, C3Py;

U, dimensionless path length, C3PL;

w, pressure path length, Py [atm cm];

¥, physical coordinate [cm)].

Greek symbols
B, line structure parameter, B?P, =
102 B%P;

Aw, effective band width [cm™'];

Ke» spectral absorption coefficient
[em™'];

K modified Planck mean coefficient

[em™'];

Kp, Plank mean coefficient [cm™'];

Kgs Rosseland mean coefficient [cm™1];

o, Stefan—Boltzmann constant ;

T optical coordinate, k,y;

Tows  Optical thickness, x,L;

T, optical coordinate, xpy;

Tos optical thickness, xpL;

i, optical coordinate, xy;

To» optical thickness, kL ;

®, dimensionless function defined by

equation (28);
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, wave number [cm~'];
o, band center [cm™!].

INTRODUCTION

ANALYSES of radiative heat transfer within
absorbing—emitting media have recently re-
ceived considerable attention. With but few
exceptions, however, this work has been re-
stricted to the assumption of a gray medium.
Moreover, virtually no comparisons have been
made between the analyses which utilize various
nongray models.

The purpose of the present paper is to in-
vestigate and compare several methods of
analyzing nongray radiative transfer in gases.
Attention will be directed specifically towards
infrared radiation in diatomic gases, wherein
the absorption and emission of thermal radia-
tion occurs as the result of vibration—rotation
bands. Diatomic gases will radiate in the infrared
only if they possess unsymmetric molecules,
with the single fundamental band being of
main importance.

Existing work in this area has been concerned
with specific problems and has dealt primarily
with the more complicated case of polyatomic
gases. Combined conduction and radiation in
ammonia has been studied both experimentally
and analytically by Gille and Goody [1]. It
was illustrated that the temperature profile
within the gas could be described by an integro-
differential equation for which the kernel was
the first derivative of the total gas emittance.
This kernel function was evaluated for ammonia
through use of the statistical model for vibration—
rotation bands. Another experimental and
analytical study is that of Nichols [2], which
deals with turbulent flow of water vapor
in the entrance region of an annular duct. The
statistical model was again employed, although
the procedure differed somewhat from that of
Gille and Goody [1]. Laminar flow of carbon
dioxide in the entrance region of a circular
tube has been analyzed by de Soto and Edwards
[3]: In this case an exponential model was used
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to describe the spectral absorption coefficient
for each vibration-rotation band.

In addition to these specific nongray solu-
tions, Wang [4] has presented a general
formulation for the case of a gas having a
single vibration-rotation band (diatomic gas).
It was shown that the one-dimensional di-
vergence of the radiation flux vector can be
described in terms of spatial integrals involving
the first and second derivatives of the total
band absorptance.

In the present investigation, comparative
solutions will be obtained for the case of a gas
bounded between two parallel black plates and
within which there is a uniform heat source.
For comparisons in which it is necessary to
specify a particular gas, carbon monoxide will
be utilized. It should again be emphasized
that the sole purpose of the present paper is
the investigation of analytical methods for
treating radiative transfer in nongray gases.
Consequently, the physically unreal assumption
of negligible thermal conduction within the gas
will be employed. It will additionally be assumed
that the gas is in local thermodynamic equi-
librium, i.e. that the populations of vibrational
and rotational energy states are collision con-
trolled.

BASIC EQUATIONS

The physical model and coordinate system
are illustrated in Fig. 1. A gas containing a
uniform heat source (or sink) per unit volume,
Q, is bounded by two infinite parallel black
plates having the same uniform temperature T;.

It will be assumed that the spectral absorption
coefficient of the gas, k, is independent of
temperature, i.e. restriction is made to moderately
small temperature differences within the gas.
With this assumption, the optical coordinate
and thickness are, on a spectral basis, respec-
tively

T = Koy Tow = KmL'

Furthermore, from [5] the spectral radiation
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heat flux within the medium may be expressed
as

Gro = 2 f [eal®) — e10] Ex(t, — f)dt

— 2T [eol) - eral Ealt — t)dt. (1)

Since it is assumed that the only other
mechanism of energy transfer to or from the

%

@=Constant T, e=l

T, e=i

7
FiG. 1. Physical model and coordinate system,

gas is the uniform heat source Q, then from
conservation of energy

=L @

where gi is the total radiative flux over all
values of wave number; i.e.

o]

qr = J qro do. 3

From symmetry it follows that g =0 at
y = L/2, and equation (2) may be integrated

to yield
QL ( )y
*® =7 (2L 1) @

Equation (4), when combined with equations
(1) and (3), yields the integral equation describ-
ing the temperature profile within the gas.

An often employed simplification to equation
(1) is obtained through use of the exponential
kernel approximation [5]

Ey(t) 3" &)

and this will be employed in the present work.
For the gray medium, approximation to the
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present problem by use of the constants
appearing in equation (5) gives the best overall
agreement with the exact solution of Heaslet
and Warming [6].

BAND INFORMATION

Diatomic absorbing-emitting gases, such as
carbon monoxide, have a single fundamental
band as well as overtone bands. Usually,
however, overtone bands may be neglected,
and only the fundamental band will be included
in the following development. The first overtone
band of carbon monoxide, for example, has
roughly one per cent of the intensity of the
fundamental band.

The line-averaged absorption coefficient for
the fundamental band of carbon monoxide is
illustrated in Fig. 2. However, this constitutes
a usable result for the variation of k,, with wave
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Wave number, cm~!
F1G. 2. Spectral absorption coefficient of carbon monoxide
at room temperature.

number only in the sense of a high-pressure
limit, i.e. when the individual rotational lines
of the band are sufficiently pressure broadened
so as to produce a uniform variation of x,
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with wave number. The area under the x,/P
vs. wave number curve is the band intensity

S(T) = J %“’dw (6)
Aw
and for the CO fundamental band is evaluated
as [7]
S(T) = 237 (g) Y]

As illustrated in [5], optically thin radiation
can often be formulated in terms of two mean
coefficients. The first is the Planck mean
coefficient, which is actually a mean emission
coefficient, defined as

f kel Tea(T)dew
kp(T) = A@__e(i’—)__——' @®

Since the band width, Aw, is quite small, e, (T)
may be assumed to be independent of wave
number within the band, and letting e, (T)
denote ¢,(T) evaluated at the band center, it
follows from equation (6) that

kp _ ep(T)

P T

The center of the CO fundamental band is
located at 8]

w, = 2143cm™ !, (10)

Equation (9) is precisely the result given by
Abu-Romia and Tien [9]), and, as discussed by
them, illustrates that xp/P is independent of
the actual line structure of the band (which of
course is the reason for the invariance with
pressure).

The second absorption coefficient applicable
to the optically thin limit is the modified
Planck mean coefficient

AIm kolT)eo(T1)dw
Kn(T, Ty) = T

Following the same procedure used in arriving
at equation (9) and noting that S(T) ~ 1/T for

S(T). ©®

@
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a fundamental band

kT, T)) _ €adTy) k) Ty
P  oT? P T
Although neither kp(T) nor x,(T,T;) are
dependent upon the line structure of the band,
the line structure will influence the range of
applicability of the optically thin limit. This is
due to the fact that the gas must be optically -
thin for all values of wave number, such that
(Kodmaxl <€ 1, where (k). denotes the maxi-
mum value of x,, within the band. This maximum
value of the absorption coefficient will cor-
respond to the peak of the strongest rotational
lines within the band, and this may considerably
exceed the maximum value for the line-averaged
absorption coefficient as would be obtained,
for example, from Fig. 2.
A quantity which will prove useful in the
following section dealing with nongray solutions
is the total band absorptance, which is defined

as
A= f [1 — exp (— %w)] do (13)

Aw

S(T) = (12)

where w = Py. With the exception of very high
pressures, the evaluation of equation (13) would
involve integration over the discrete line struc-
ture of the band, and this would prove to be a
formidable task. However, through the use of
simplified band models, considerable informa-
tion can be deduced concerning the total band
absorptance. For example, employing the model
of a vibrating nonrigid rotator, Edwards and
Menard [10] have shown that the total band
absorptance possesses a logarithmic asymptote
for large values of the path length w. This
asymptotic behavior had previously been ob-
served experimentally [11]. Furthermore, the
logarithmic asymptote applies when the path
length is sufficiently large such that the central
portion of the band is opaque, and radiation
transfer within the gas takes place solely in the
wing regions of the band.

Further conditions on the total band absorp-
tance have been given by Tien and Lowder [12],



INFRARED RADIATIVE HEAT TRANSFER IN NONGRAY GASES

from which they arrived at the correlation

A=Ayl {uf(ﬁ) L«_iizf_z(—ﬁ)] + 1} (14)
where
u=C:iPy PB=B?P,
f(B) = 2941 — exp (—2-60 B)]
and

4,C3 = S(T). (15)
In addition, for the CO fundamental band [13]

0-42
B? = 00838 (—3—,;-,“2)

(16a)

(16b)

P, = 1.02P. (16¢)

It is important to recognize that equation (14)
does, at least in a semi-empirical sense, account
for the line structure of the band. This line
structure dependency introduces the dimension-
less pressure, B, as a parameter.

A very simple band approximation, which has
seen application in the calculation of gas
emittances [8], is the box model. This is illus-
trated in Fig 2, and it is assumed that k,, is
constant over an effective band width Acw.
It is natural to require that the area under the
approximated band is conserved; that is

kAw = PS(T). amn

From Penner [8), the effective band width for
the CO fundamental band may be expressed by

T \?
Aw = 214 (ﬂ) .
Thus, for the CO fundamental, equations (7,
17, 18) yield
K 300\%
L

The box model has the same failings in the
present application as it does in the calculation

(18)

(19)
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of gas emittances [8]. Since the model in no
way accounts for the line structure of the band,
it is restricted to moderately high pressures.
It would further be expected that the box
model should fail for large path lengths, since
it does not account for the wing regions of the
band, but arbitrarily cuts off the band at
o, + Aw/2.

RADIATIVE TRANSFER ANALYSES

In this section several approximate methods
of solving the present problem will be illustrated.
With the exception of the optically thin limit,
the solutions are consistent with the application
of the exponential kernel approximation as
described by equation (5). The various solutions
pertain to different methods of approximating
the spectral behavior of the absorption coefficient
K, As previously discussed, it will be assumed
that the spectral absorption coefficient is inde-
pendent of temperature, and x, will be evaluated
at the temperature T,.

Gray gas

The gray gas assumption replaces the wave-
number dependent absorption coefficient by a
wave-number averaged quantity. For lack of a
more rational choice, this average coefficient

will be taken to be xx(T}), and thus
T=Kpy To = KpL.

On combining equations (1, 3, 4, 5) the integral
equation describing the gray gas problem
becomes

T
EEGE‘)
_ ;j[m) — T4 exp [ ¥ - )] dt
0

0

- %J'[T‘(t) — T{lexp[—3(t — ]de.  (20)

T

When this equation is differentiated twice,
the integrals repeat themselves and may be
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eliminated, and the solution for the temperature
profile within the gas is

T* =T} 1 1 ,,ft *
il S o) @
Qloxp, 3 Tty e T, T3 @1)

Note that under optically thin conditions
(to — 0)

T - Tf 1 @)
Qloxp 3
Optically thin limit

An exact formulation of the nongray problem
is possible in the optically thin limit. From [5]
- %";‘5 = dox (T, T)T? — 4ok f(T)T*.  (23)

Combining this with equation (2), and making
use of the result

T,
(T, Ty) = 1Ty 1 (24)
as given by equation (12), there is obtained
T5
ke(T)T* — x,,(Tl)~,1:1 = % (25)

Since later solutions will describe the gas
temperature in terms of the Planck function
evaluated at the band center, it will be con-
venient to rephrase equation (25), through use
of equation (9), and since S(T) ~ 1/T, to yield

_Q
4PS(TY

Since x,(7T) is assumed to be independent of
temperature and evaluated at the temperature
T,, S(T) may be replaced by S(T) in the above
expression, with the result

ea)c(T) - emc(Tl) =

o (T) — €, (Ty)
Q/PS(Ty)

Equation (26) could also be obtained by
first allowing the spectral absorption coefficient
to be temperature dependent, and then going

1
=7 (26)
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to the limit of small temperature differences.
This would not be the case, however, if one
employs equation (25) and then assumes that
the Planck mean absorption coefficient is
independent of temperature. In other words,
the correct formulation for small temperature
differences corresponds to assuming that the
spectral coefficient, and not the Planck mean, is
independent of temperature.

It is of interest to compare equation (26) with
equation (22), which is the optically thin form
of the gray gas solution. There are two distinct
differences in these results. The first involves
the numerical coefficient appearing on the
right side of each of the equations (3 and 3),
and this difference has nothing to do with the
spectral formulation of the problem. The value
of { appearing in equation (22) is a consequence
of the exponential kernel approximation, which,
as given by equation (5), produces the greatest
error for optically thin conditions.

Aside from this difference in a numerical
constant, equations (22) and (26) give, as will
be shown later, decidedly different results for
the gas temperature. The reason for this is
that the gray gas solution is incorrect even in
the optically thin limit. This is due to the fact
that the gray gas solution is formulated solely
in terms of the Planck mean coefficient, whereas
the correct optically thin formulation involves
both the Planck mean and modified Planck
mean coefficients. Furthermore, it has been
assumed in the gray gas analysis that the
Planck mean coefficient is independent of
temperature, and from previous arguments this
is incorrect even for small temperature dif-
ferences.

Box model

Consider now the application of the box
model. Letting
where « is defined by equation (17), and recalling
that the absorption coefficient is assumed to be
zero outside of the effective band width Aw,
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equations (1, 3, 4, 5) combine to yield
(22 1) =2 | pyexp [5G - ] dt
2 \°, =3 )emep LTt

0

3
~3foremi-sc-ma e
where
_ o (T) — e, (T3)

=" okhe 28)
Equation (27) is of the same form as the gray
gas equation (20), and the temperature profile,
described in terms of Planck’s function evalu-
ated at the band center, is found to be

_1 o

o@) = + y) >+ 33 (fo fg)' (29)
Note that for optically thin conditions (T — 0),
equation (29) reduces to

0 19
3 xAw 3 PS(Ty)

With the exception of the previously discussed
numerical factor, equation (30) is identical
to the optically thin result as given by equation
(26); that is, the box model yields the correct
optically thin limit. This should be expected,
since the formulation of the optically thin limit
is independent of the actual variation of x,
with wave number, but depends only upon the
area under the x,/P vs. @ curve. Recall that
the box model satisfies the correct area require-
ment as given by equation (17).

eo(T) — e, (Ty) = (30)

Band absorptance model

A solution will now be obtained which
accounts in an approximate manner for both
the line structure and the wings of the band.
This is accomplished by expressing the kernel
for the integral equation in terms of the total
band absorptance given by equation (14). The
method of formulating the integral equation
is somewhat analogous to that employed by
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Gille and Goody [1], while it constitutes an
approximate kernel application of Wang’s
formulation [4].

It will first be convenient to recast equation

(1) in terms of the physical coordinate y, that is
Tow t

= — L =—, = —
y Ko Ko z Ko

so that equations (1) and (5) yield

dro = j[ew(z) elw]xw

—p

(2) elm]’cm

-
e

exp l:— 3%(2 - y)] dz. (31)

Again assuming that Planck’s function is in-
dependent of wave number within the band,
and noting from equation (13) that

A@y) = jrc e " dw

then equations (3) and (31) yield
y
qr = %g[eo;c(z) - elw‘.] A'[%(y - Z)] dz

L
-3 [ [eal?d) — €10 ] APz — M]dz.  (32)

In that the correlation for the total band
absorptance is in terms of the dimensionless
path length u, it will be convenient to convert
equation (32) from y to u. Note first, however,
that from equation (15)

SP

u= CiPy=—

while from equations (16a, 17, 18)

_24sp - 214 214
T3 Ae’ T 38T

and thus u is an optical coordinate directly

z (33)
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related to that employed in the box model.
With u, = C3PL, and letting «' be the dummy
variable for u, equation (33) becomes

15 = 1 [ (o) — e10] AT — )] dw

- %“j?[emc(u') - €10 ] AW — w]dw (34)

where A'(u) denotes the derivative of A(u) with
respect to u.

The dimensionless quantity ¢, which was
introduced in the box model solution, will
again be employed, and note from equations
(15, 17, 28) that

_ em,_-(T) - elmp _ emc(T) - elwc

Q/x Aw Q/PS
. eaoc(T) - elmc
= "o/ - Y

Furthermore, the dimensionless band absorp-
tance A is defined by 4 = A/4,, and upon
combining equations (4) and (34), the integral
equation describing the present problem be-
comes

229 (2u—t: - 1) = %I(p(u’) A[Bu — w)]duw
0

-3 f o) AP — wlde.  (36)

The solution of equation (36) has been
accomplished by the method of undetermined
parameters. A polynomial solution for ¢ was
assumed, and the constants evaluated by satisfy-
ing the integral equation at equally spaced
locations. Both quadratic and quartic solutions
were utilized, with the two solutions yielding
virtually identical results.

Optically thick limit
From Abu-Romia and Tien [9], the radiative
flux for optically thick radiation is expressed as

40 dT*

qr = — 3~

3kg dy 37)
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where kg is a Rosseland coefficient associated
with the fundamental band and is defined by

1 1d
— = | —Zedo,
Kr K, de

Aw

(38)

The flux gz as described by equation (37) is
actually the flux within the wave number region
of the band. Due to the symmetry of the present
problem, however, there is no net flux outside
the band.

On combining equations (4) and (37), integrat-
ing, and making use of the fact that temperature
continuity at the wall is achieved under optically
thick conditions, one has

3kgQI? 2
T — T = —gg—@ - %2-) (39)

There appears to be considerable difficulty in
evaluating equation (38), since there will always
be an optically non-thick region in the band

- wings. A procedure employed in [9] to evaluate

kg consists of assuming an Flsasser model, which
replaces the band by equally spaced lines of
equal intensity. However, this is simply an
extension of the box model, and in fact reduces
to the box model for f — co. Since no account
is made of the wing regions of the band, and
since the wing regions are of prime importance
for large path lengths, this procedure is open
to some question.

COMPARISON OF RESULTS

For the sake of brevity, it will be sufficient
for comparative purposes to compare centerline
temperatures as predicted by the various spectral
models; that is, T, = T(y = L/2). Recall that
both the box model and the band absorptance
model describe the temperature profile in
terms of the quantity ¢ defined by equation (35).
It will thus be convenient to describe the
centerline temperature, in terms of Planck’s
function evaluated at the band center, by the
dimensionless group

uo) _ w1 — € (Th)
o)

Q/PS(T)) ¢“0)
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The box model parameter 7, and the band
absorptance parameter u, are related for carbon
monoxide through equation (33). Results for
@(uo/2), as obtained from equation (29) for the
box model and from the solution of equation
(36) for the band absorptance model, are
illustrated in Fig. 3. Furthermore, the optically

~———Band absorptance mode!
———=Box model

£

S

L

=

Y |.°‘.—

o % | ]
or O -0 0 100 00
uo-%!g-iL

FiG. 3. Comparison of results for carbon monoxide.

thin limit follows from equation (30) to be

o) _1
/-5

Note that the band absorptance model
approaches the correct optically thin limit,
with the results becoming independent of the
line structure parameter in this limit. This of
course is consistent with the fact that the line
structure of the band has no effect under
optically thin conditions, with the radiative
transfer process depending solely upon the
area under the k,/P vs. wave number curve.
As the path length u, is increased, the band
absorptance results show a greater departure
from the optically thin limit for small values of
the line structure parameter 8. This is consistent
with previous discussion. For small values of
(low pressures), the maximum value of k,/P
will exceed that for higher pressures, and cor-
respondingly, for increasing uq, optically non-
thin conditions will first occur for small § values.

The maximum influence of line structure
exists for intermediate values of u, while for

(41)
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large values of path length the band absorptance
results again become insensitive to B. This
corresponds to the path length range for which
the total band absorptance, as given by equation
(14), reduces to the logarithmic asymptote A =
In u, and is thus independent of §. As previously
discussed, the physical implication is that the
central portion of the band is opaque, with
radiative transfer occurring solely within the
wing regions. Edwards et al. [14] have pointed
out that the wings possess a more continuous
structure than the central portion of the band,
with the consequent supression of the import-
ance of line structure at large path lengths.

With reference to the box model results,
recall that the box model neglects line structure
and thus is a large § approximation. From
Fig. 3 it is seen that the box model solution
departs from the optically thin solution more
slowly than its band absorptance counterpart
(B = 1 - o). This is easily explained on physical
grounds. In the central portion of the band the
box model underpredicts the value of the spectral
absorption coefficient (see Fig. 2) such that the
box model will yield optically thin results for
greater values of u, than will the band absorp-
tance model. At large values of u, the box model
overpredicts the centerline temperature due
to the neglect of the band wings. For large
path lengths the wing regions contribute pri-
marily to radiative transfer. Since the box
model neglects the wings, it underestimates the
ability of the gas to transfer radiant energy for
large u, values, and consequently overpredicts
the centerline temperature.

In regard to comparing the gray gas and
optically thick solutions with the band absorp-
tance solution, note that equations (21) and
(39) describe the centerline temperature as
T2, while T, is given in terms of Planck’s
function for the band absorptance model. To
express T, in a comparable form, it should be
recalled that the present analyses are based
on the assumption that x, is independent of
temperature; that is, restriction has been made
to small temperature differences. In line with
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this, the linearizations
T* — T} ~4TXT - T))
and

ol - ey~ (32) -m)

are applicable. On eliminating (T — T,) from
these two expressions, there is obtained

! (de JdT)T= T1 [ew,( ) emC( l)]
(42)

Through use of equation (42), it is possible
to express (T*— T9) in terms of @(ue/2).
Specifically, from equation (35) this yields

~ 4T?Q uO
e~ T~ 55T, @ewdTirer, (’2’) “3)

such that equations (21) and (39) may be
rephrased to yield results for ¢(uy/2). Note that
this necessitates specifying not only the gas but
also the wall temperature T;. The band absorp-
tance, gray gas, and optically thick solutions
are compared in Figs. 4 and 5 for T, = 1000°K

and 2000°K respectively.
I
7=1000°K / d
)= Bse/ / /
——— Band absorptance mode! ’/ ,//
- 10~  —-—Rosselond equation / /7
= ———=~Gray gas, x=x, d ’ /
3 :— ,/ / /
I8 / // /
P g /
T B=0-] B=01 /
s < o S
v e
= 7
o | il
Ol O -0 10 100 [
uu-gl.—?il.

Fi6. 4. Comparison of results for carbon monoxide,
T, = 1000°K.

It is seen that the gray gas solution is in
poor agreement with the more realistic band
absorptance solution, even in the optically
thin limit. This disagreement in the thin limit
is a consequence of two errors which are
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inherent in the gray gas analysis. The first is
that the gray gas absorption coefficient has
been assumed to be the Planck mean. This is
correct only with regard to emission, whereas
in the thin limit the correct mean absorption
coefficient is the modified Planck mean. Second-
ly, in the gray gas solution it has been assumed
that kp is independent of temperature, and as
previously discussed this is incorrect even for
small temperature differences.

7, =2000°K
-~ 1ol Band obsorptance model
Bl " ——-—Rosselond equation /
JE —~—= Gray gas, x=x, ’ ;
LR / /
2R / /
=0 <4 /
4 10 B=0- //
//
///
-
o | I | [
o0 [+R] [E<) 10 100 1000
=G re

FiG. 5. Comparison of results for carbon monoxide,
T, = 2000°K.

Also illustrated in Figs. 4 and 5 are results
based upon the optically thick (or Rosseland)
equation applied to a single band. Values of
the Rosseland coefficient x5 for the CO funda-
mental band were taken from [9], and the
method of calculating this coefficient, employing
the Elsasser model, was described previously.

Presumably, the optically thick solution
should describe the asymptotic behavior for
large values of the path length u, Note from
Figs. 4 and 5, however, that the Rosseland
equation curves have a considerably different
slope than appears to be asymptotically achieved
by the band absorptance model. The slope of
the Rosstland curves actually coincides with
that approached by the box model and gray
gas solutions. Furthermore, the Rosseland
results show a strong dependence upon the line
structure parameter § and this is not in accord
with previous conclusions.

These apparent shortcomings of the optically
thick solution are evidently due to the fact
that vibration-rotation bands can never be
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optically thick over the entire spectral range
where radiative transfer is important. For
example, consider the limit f — oo, such that
the variation x,/P with wave number is the
line-average value illustrated in Fig. 2. In the
band wings, x,/P approaches zero asymptotic-
ally, so that for large values of u, the wings will
constitute regions for which there will be a
continuous transition from the opaque to the
transparent limits. These wing regions will, of
course, be the sole wave number regions for
which radiative transfer within the gas occurs,
since the central portion of the band will be
opaque. In other words, for large u, optically
nonthick radiation will occur in the band wings,
whereas in [9] it was necessary to neglect the
wing regions in order to define a band Rosseland
coefficient.*

A final comment regarding the limit of large
up concerns the neglect of the first overtone
band. This band, which has been neglected
in the present work, will become important
for large path lengths. Its inclusion, however,
would not alter the conclusion concerning the
applicability of the Rosseland equation to
vibration-rotation bands.
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Résumé—L’objet de cette recherche est d’étudier plusieurs méthodes approchées d’analyse du transport
de chaleur par rayonnement infrarouge dans des gaz non gris et nonisothermes. Dans ce but, on a choisi
un systéme physique trés simple sonsistant en un gaz compris entre deux plaques noires paraliéles infinies
ayant la méme température uniforme. 11 existe une source (ou un puits) de chaleur uniforme dans le gaz.
De plus, on se restreint aux gaz ayant une seule bande fondamentale de vibration—rotation, c’est-3-dire,
aux gaz diatomiques.

On trouve que pour des épaisseurs optiques intermédiaires, la structure des lignes de la bande de vibra-
tion-rotation, peut avoir un effet important sur la distribution de température dans le gaz. Des prévisions
basées sur I'hypothése du gaz gris conduisent & des grandes erreurs. On montre plus loin que Pon ne,
peut pas appliquer le cas limite optiquement épais 4 toute une bande de vibration—rotation, puisqu'il y
aura toujours une région non épaisse optiquement dans les extrémités de 1a bande, et que de telles régions

contribueront d’une fagon importante au processus de transport par rayonnement.

Zusammenfassung—Es werden verschiedene Niherungsverfahren zur Berechﬁung des Warmeiibergangs

durch Strahlung in nicht-grauen und nicht isothermen Gasen untersucht. Ein sehr einfaches physikalisches-
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System, nédmlich zwei parallele, unendlich ausgedehnte schwarze Platten gleicher Temperatur, zwischen
denen sich das Gas befindet, wird zu Grunde gelegt. Im Gas befindet sich eine homogene Wirmequelle
(oder Senke). Weiterhin werden die Uberlegungen beschrinkt auf Gase mit einer einzigen Grundschwin-
gungs—Rotationsbande, d.h. auf zweiatomige Gase.

Es ergibt sich, dass die Linienstruktur der Schwingungs-Rotationsbanden bei mittleren optischen
Dicken einen betrichtlichen Einfluss auf die Temperaturverteilung im Gas haben kann. Es wird gezeigt,
dass Vorhersagen, die auf der annahme eines grauen Gases beruhen, sehr fehlerhaft sind. Ausserdem
wird gezeigt, dass man die Niherung fiir den optisch dicken Fall nicht fiir die gesamte Schwingungs—-
Rotationsbande verwenden kann, weil in der Bande immer optisch nicht-dicke Bereiche sein werden,

die erheblich zum Wirmeiibergang durch Strahlung beitragen.

Annoranua—IIpenMeroM RAHHOrO MCCIEXOBAHHA MABJIAETCA HBYHeHHe DAIIMYHHX IIPH-
6miKeHHHX MEeTOXOB aHAJIN3a HHPPAKPACHOTO JySHMCTOrO TeII00GMeHA B HEM30TePMUYECKHUX
cpeRax HecepHx rason. C sToi#t nenblo GHIIA BHOpaHA OYeHB NMpOCTaA QUaHueCKAA CHCTEMA,
COCTOMIMIAA N3 rasa, 3aKIIOYeHHOr0 MeAy AByMA GeCKOHeYHHMH NAPAIeAbHHMHA YepHHMMU
H30TePMHYECKMMHU IIACTHHKAMH C OXMHAKOBOH TeMmeparypoli. B rasoBoit cpeme uMeerca
OfHOPORHHM MCTOYHMK (WM CTOK) Tenda. MccaemoBasiuch TONLKO rashi, MMelolliMe ORHY
OCHOBHYI0 BHGPALMOHHO-BPAIIATEAbRYIO OJOCY NMOIJIOIEHHKA, T.€. ABYXaTOMHHE rash.
VcraHoBNIeHO, 4YTO AJMA NPOMEKYTOYHHX BSHAa4YeHMI ONTHYeCKOM TOMMMHH JHHeHHad
CTPYKTYpa KoJebaTeabHO-BPAIATENbHOM ITONOCH NOTrJOUIEHHA MOMT 3HAYMTENHHO BIMATH
HA pacnpefesieHHe TeMnepaTyphi B rase. Ilokasano, 4To pacyernl, OCHOBaHHLIE HA JOIyIIe-
HHAX O cepoM rase, aaior Goxpmue omubku. [asee Ha NpUMepaX IOKA3AHO, YTO NPENEIbLHO
6onbluMe 3HAYeHUA ONTHYECKON TOMIUMHH HeXb3d NPHMEHUTh KO Bcell BHOPHIMOHHO—
BpaImaTeJabHOM| HoJ0ce, T.K. HA KORIaX NOJOCH BCeTAA CyMecTBYIOT 06aacTn ¢ HeGOJIbIINMHK
3HAUYCHHAMMU ONTHYECKON TOJNIIHHE, KOTOPHE UMeIT 60NIbIIce 3HAYEeHHE B HPOLECCe JTYYHCTOTO
Temroo6mena.



