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Abstract-The object of this investigation is to study various approximate methods of analyzing infrared 
radiative heat transfer in noagray nonisothermal gases. For this purpose, a very simple physical system 
was chosen consisting of a gas bounded by two infinite parallel black plates having the same uniform 
temperature. There is a uniform heat source (or sink) within the gas. Furthermore, attention is restricted 
to gases having a single fundamental vibration-rotation band; that is, diatomic gases. 

It is found that for intermediate optical thicknesses, the line structure of the vibration-rotation band 
can have a significant effect upon the temperature distribution within the gas. Predictions based on the 
gray gas assumption am shown to be greatly in error. It is further illustrated that one camot apply the 
optically thick limit to an entire vibration-rotation band, since there will always be an optically non-thick 
region in the band wings, and such regions will contribute significantly to the radiative transfer process. 

NOMENCLATURFa T, temperature rK] ; 
total band absorptance [cm- ‘1; T,, wall temperature ; 
band width parameter [cm- ‘1; u, dimensionless coordinate, CiPy ; 
line width parameter [atm- ‘1; uo9 dimensionless path length, CiPL ; 
correlation parameter [atm- l cm- ‘1; W, pressure path length, Py [atm cm] ; 
total black body emissive power y, physical coordinate [cm]. 
TW/cm21 ; 
Plank’s function ~/cm2/cm- ‘1; Greek symbols 
Plank’s function-evaluated at-tem- 
perature Tl ; 
Planck’s function evaluated at wave 
number 0,; 
exponential integral ; 
distance between plates [cm] ; 
pressure [atm] ; 
total radiation heat flux [W/cm2] ; 
spectral radiation heat flux @N/cm”/ 
cm-‘]; 
heat source or sink ~/cm3] ; 
total band intensity [atm-’ cm-‘] ; 
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line structure parameter, B’P, = 
1.02 B’P; 
effective band width [cm- ‘1; 
spectral absorption coefficient 

[cm- ‘I; 
modified Planck mean coefficient 

[cm-‘]; 
Plank mean coeficient [cm- ‘1; 
Rosseland mean coefficient [cm- ‘1; 
Stefan-Boltzmann constant ; 
optical coordinate, ~,y ; 
optical thickness, K& ; 
optical coordinate, KAY; 
optical thickness, K,.J? ; 
optical coordinate, Xy ; 
optical thickness, ‘izL ; 
dimensionless function defined by 
equation (28) ; 
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wave number [cm- ‘1; 
band center [cm- ‘1. 

INTRODUCTION 

ANALYSEB of radiative heat transfer within 
absorbing-emitting media have recently re- 
ceived considerable attention. With but few 
exceptions, however, this work has been re- 
stricted to the assumption of a gray medium. 
Moreover, virtually no comparisons have been 
made between the analyses which utilize various 
nongray models. 

The purpose of the present paper is to in- 
vestigate and compare several methods of 
analyzing nongray radiative transfer in gases. 
Attention will be directed specitically towards 
infrared radiation in diatomic gases, wherein 
the absorption and emission of thermal radia- 
tion occurs as the result of vibration-rotation 
bands. Diatomic gases will radiate in the infrared 
only if they possess unsymmetric molecules, 
with the single fundamental band being of 
main importance. 

Existing work in this area has been concerned 
with specific problems and has dealt primarily 
with the more complicated case of polyatomic 
gases. Combined conduction and radiation in 
ammonia has been studied both experimentally 
and analytically by Gille and Goody [l]. It 
was illustrated that the temperature profile 
within the gas could be described by an integro- 
differential equation for which the kernel was 
the first derivative of the total gas emittance. 
This kernel function was evaluated for ammonia 
through use of the statistical model for vibration- 
rotation bands. Another experimental and 
analytical study is that of Nichols [2], which 
deals with turbulent flow of water vapor 
in the entrance region of an annular duct. The 
statistical model was again employed, although 
the procedure differed somewhat from that of 
Gille and Goody [l]. Laminar flow of carbon 
dioxide in the entrance region of a circular 
tube has been analyzed by de Soto and Edwards 
[3]. In this case an exponential model was used 

to describe the spectral absorption coefficient 
for each vibration-rotation band. 

In addition to these specific nongray solu- 
tions, Wang [4] has presented a general 
formulation for the case of a gas having a 
single vibration-rotation band (diatomic gas). 
It was shown that the onedimensional di- 
vergence of the radiation flux vector can be 
described in terms of spatial integrals involving 
the first and second derivatives of the total 
band absorptance. 

In the present investigation, comparative 
solutions will be obtained for the case of a gas 
bounded between two parallel black plates and 
within which there is a uniform heat source. 
For comparisons in which it is necessary to 
specify a particular gas, carbon monoxide will 
be utilized. It should again be emphasized 
that the sole purpose of the present paper is 
the investigation of analytical methods for 
treating radiative transfer in nongray gases. 
Consequently, the physically unreal assumption 
of negligible thermal conduction within the gas 
will be employed. It will additionally be assumed 
that the gas is in local thermodynamic equi- 
librium, i.e. that the populations of vibrational 
and rotational energy states are collision con- 
trolled. 

BASIC EQUATIONS 

The physical model and coordinate system 
are illustrated in Fig 1. A gas containing a 
uniform heat source (or sink) per unit volume, 
Q, is bounded by two infinite parallel black 
plates having the same uniform temperature T1. 

It will be assumed that the spectral absorption 
coefficient of the gas, K, is independent of 
temperature, i.e. restriction is made to moderately 
small temperature differences within the gas. 
With this assumption, the optical coordinate 
and thickness are, on a spectral basis, respec- 
tively 

roJ = &Y zoo, = K,L. 

Furthermore, from [S] the spectral radiation 
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heat flux within the medium may be expressed 
as 

9Ral = 2 ‘g [e&) - el,J E,(T, - t) dt 

moJ 

- 2 tL kit) - %,I EAt - ~1 dt. (1) 

Since it is assumed that the only other 
mechanism of energy transfer to or from the 

x 

FIG. 1. Physical model and coordinate system. 

gas is the uniform heat source Q, then from 
conservation of energy 

@R-Q 
dy- 

where qR is the total radiative flux over all 
values of wave number; i.e. 

qR = 1 qRo, do. (3) 

From symmetry it follows that qR = 0 at 
y = L/2, and equation (2) may be integrated 
to yield 

qR=QL y 2 2E-1. 
( > 

(4) 

Equation (4), when combined with equations 
(1) and (3), yields the integral equation describ- 
ing the temperature profile within the gas. 

An often employed simplification to equation 
(1) is obtained through use of the exponential 
kernel approximation [S] 

E,(t) N 0 e- 3”2 (5) 

and this will be employed in the present work. 
For the gray medium, approximation to the 

present problem by use of the constants 
appearing in equation (5) gives the best overall 
agreement with the exact solution of Heaslet 
and Warming [6]. 

BAND INFORMATION 

Diatomic absorbing+mitting gases, such as 
carbon monoxide, have a single fundamental 
band as well as overtone bands. Usually, 
however, overtone bands may be neglected, 
and only the fundamental band will be included 
in the following development. The first overtone 
band of carbon monoxide, for example, has 
roughly one per cent of the intensity of the 
fundamental band. 

The line-averaged absorption coeff%&nt for 
the fundamental band of carbon monoxide is 
illustrated in Fig 2. However, this constitutes 
a usable result for the variation of K, with wave 

4 -0405 atm-‘cm- Line-average 
/ 1 Box model 

_- -- 
ll 

I 

ocl 

Wave number, cm-l 

FIG. 2. Spectral absorption coefficient of carbon monoxide 
at room temperature. 

number only in the sense of a high-pressure 
limit, i.e. when the individual rotational lines 
of the band are sufficiently pressure broadened 
so as to produce a uniform variation of K, 
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with wave number. The area under the G/P 
vs. wave number curve is the band intensity 

S(T) = $do (6) 
Aa, 

and for the CO fundamental band is evaluated 

as VI 

. 

As illustrated in [S], optically thin radiation 
can often be fo 

$ 
ulated in terms of two mean 

coefficients Th first is the Planck mean 
coefficient, which is actually a mean emission 

coefficient, defmed as 

Kp(T) = bJmKm(T)e,V’)d~ 

e(T) * 
(8) 

Since the band width, AU, is quite small, e,(T) 
may be assumed to be independent of wave 
number within the band, and letting e,=(T) 
denote e,(T) evaluated at the band center, it 
follows from equation (6) that 

UP e (T) 
- = *s(T). 
P 

The center of the CO fundamental band is 
located at [83! 

o, = 2143 cm-‘. (10) 

Equation (9) is precisely the result given by 
Abu-Romia and Tien [9], and, as discussed by 
them, illustrates that rep/P is independent of 
the actual line structure of the band (which of 
course is the reason for the invariance with 
pressure). 

The second absorption coeflicient applicable 
to the optically thin limit is the modified 
Planck mean coefficient 

j rG%#‘r)dw 
KJT, 7.1) = Aa, 

e(T,) . 
(11) 

Following the same procedure used in arriving 
at equation (9) and noting that S(T) - l/T for 

a fundamental band 

J&v, G) e Vi) 
P 

‘Z&._~(T)+LE. (12) 
. 1 

Although neither r+(T) nor rc,(T, Tr) are 
dependent upon the line structure of the band, 
the line structure will influence the range of 
applicability of the optically thin limit. This is 
due to the fact that the gas must be optically 
thin for all values of wave number, such that 
(rcm)_L 4 1, where (IC,)_ denotes the maxi- 
mum value of rc,, within the band This maximum 
value of the absorption coefficient will cor- 
respond to the peak of the strongest rotational 
lines within the band, and this may considerably 
exceed the maximum value for the line-averaged 
absorption coefficient as would be obtained, 
for example, from Fig. 2. 

A quantity which will prove useful in the 
following section dealing with nongray solutions 
is the total band absorptance, which is defined 
as 

A=1 [1 -exp (-$w)] do (13) 

where w = Py. With the exception of very high 
pressures, the evaluation of equation (13) would 
involve integration over the discrete line struc- 
ture of the band, and this would prove to be a 
formidable task. However, through the use of 
simplified band models, considerable informa- 
tion can be deduced concerning the total band 
absorptance. For example, employing the model 
of a vibrating nonrigid rotator, Edwards and 
Menard [lo] have shown that the total band 
absorptance possesses a logarithmic asymptote 
for large values of the path length w. This 
asymptotic behavior had previously been ob- 
served experimentally [ill. Furthermore, the 
logarithmic asymptote applies when the path 
length is sufficiently large such that the central 
portion of the band is opaque, and radiation 
transfer within the gas takes place solely in the 
wing regions of the band. 

Further conditions on the total band absorp- 
tance have been given by Tien and Lowder [12], 
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from which they arrived at the correlation 

where 

u = CiPy fi = B’P, 

f(/?) = 2*94[1 - exp (- 260 8)] 

and 

ACIG = S(T). (15) 

In addition, for the CO fundamental band [13] 

T 3 
A, = 38 3oo 

0 
P4 

(16b) 

P, = 1.02P. (Iti) 

It is important to recognize that equation (14) 
does, at least in a semi-empirical sense, account 
for the line structure of the band. This line 
structure dependency introduces the dimension- 
less pressure, j?, as a parameter. 

A very simple band approximation, which has 
seen application in the calculation of gas 
emittances [S], is the box model. This is illus- 
trated in Fig. 2, and it is assumed that K, is 
constant over an effective band width Ao. 
It is natural to require that the area under the 
approximated band is conserved; that is 

KAo = PS(T). (17) 

From Penner [S], the effective band width for 
the CO fundamental band may be expressed by 

T * 
bo = 214 3oo . 

0 
(18) 

Thus, for the CO fundamental, equations (7, 
17, 18) yield 

ii 300 4 
- = 1.11 7 . 
P ( > 

(19) 

The box model has the same failings in the 
present application as it does in the calculation 

of gas emittances [8]. Since the model in no 
way accounts for the line structure of the band, 
it is restricted to moderately high pressures. 
It would further be expected that the box 
model should fail for large path lengths, since 
it does not account for the wing regions of the 
band, but arbitrarily cuts off the band at 
o, + AU/~. 

RADIATIVE TRANSFER ANALYSES 

In this section several approximate methods 
of solving the present problem will be illustrated. 
With the exception of the optically thin limit, 
the solutions are consistent with the application 
of the exponential kernel approximation as 
described by equation (5). The various solutions 
pertain to different methods of approximating 
the spectral behavior of the absorption coefficient 
K,. As previously discussed, it will be assumed 
that the spectral absorption coefficient is inde- 
pendent of temperature, and K, will be evaluated 
at the temperature T1. 

Gray gas 

The gray gas assumption replaces the wave- 
number dependent absorption coefficient by a 
wave-number averaged quantity. For lack of a 
more rational choice, this average coefficient 
will be taken to be K~TJ, and thus 

z = lcpy zo = KpL. 

On combining equations (1, 3,4, 5) the integral 
equation describing the gray gas problem 
becomes 

= i ’ [T4(t) - Tf] exp [ -j(z - t)] dt 
I 
0 

- : ” [T4(t) - Tt] exp [ -jjt - r)] dt, 
I 

(20) 

T 

When this equation is differentiated twice, 
the integrals repeat themselves and may be 
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eliminated, and the solution for the temperature 
profile within the gas is 

(21) 

Note that under optically thin conditions 

(to -+ 0) 

(22) 

Optically thin limit 
An exact formulation of the nongray problem 

is possible in the optically thin limit. From [S] 

- 2 = 4orc,( T, T,)T: - 4m+(T)T4. (23) 

Combining this with equation (2), and making 
use of the result 

as given by equation (12), there is obtained 

K~T)T~ - K~T&$ = 2. (25) 

Since later solutions will describe the gas 
temperature in terms of the Planck function 
evaluated at the band center, it will be con- 
venient to rephrase equation (23 through use 
of equation (9), and since S(T) N l/T, to yield 

Q 

Since K,(T) is assumed to be independent of 
temperature and evaluated at the temperature 
T,, S(T) may be replaced by S(T,) in the above 
expression, with the result 

e,f(T) - e,e(T,) = 1 
QIWT,) 2‘ (26) 

Equation (26) could also be obtained by 
first allowing the spectral absorption coefficient 
to be temperature dependent, and then going 

to the limit of small temperature differences. 
This would not be the case, however, if one 
employs equation (25) and then assumes that 
the Planck mean absorption coefficient is 
independent of temperature. In other words, 
the correct formulation for small temperature 
differences corresponds to assuming that the 
spectral coefficient, and not the Planck mean, is 
independent of temperature. 

It is of interest to compare equation (26) with 
equation (22), which is the optically thin form 
of the gray gas solution. There are two distinct 
differences in these results. The first involves 
the numerical coefficient appearing on the 
right side of each of the equations (4 and i)>, 
and this difference has nothing to do with the 
spectral formulation of the problem. The value 
of 3 appearing in equation (22) is a consequence 
of the exponential kernel approximation, which, 
as given by equation (5), produces the greatest 
error for optically thin conditions. 

Aside from this difference in a numerical 
constant, equations (22) and (26) give, as will 
be shown later, decidedly different results for 
the gas temperature. The reason for this is 
that the gray gas solution is incorrect even in 
the optically thin limit. This is due to the fact 
that the gray gas solution is formulated solely 
in terms of the Planck mean coefficient, whereas 
the correct optically thin formulation involves 
both the Planck mean and modified Planck 
mean coefficients. Furthermore, it has been 
assumed in the gray gas analysis that the 
Planck mean coefficient is independent of 
temperature, and from previous arguments this 
is incorrect even for small temperature dif- 
ferences. 

Box model 
Consider now the application of the box 

model. Letting 

5 = zy To = ZL 

where G is defined by equation (17), and recalling 
that the absorption coefficient is assumed to be 
zero outside of the effective band width Aw, 
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equations (1, 3,4, 5) combine to yield 

q(t) exp [ -$-(i? - t)] dt 

Cl 
io 

- 2 q(t)exp[-$(t - 
I 

Z)] dt (27) 
i 

where 

cp= 
e,JT) - e,(T) 

Q/;Aw * 
(28) 

Equation (27) is of the same form as the gray 
gas equation (20), and the temperature profile, 
described in terms of Planck’s function evalu- 
ated at the band center, is found to be 

Note that for optically thin conditions (T + 0), 
equation (29) reduces to 

e (T)-e (,)=JLG1 Q -- % % 1 3 K Ao 3 PS(TJ 
(30) 

With the exception of the previously discussed 
numerical factor, equation (30) is identical 
to the optically thin result as given by equation 
(26); that is, the box model yields the correct 
optically thin limit. This should be expected, 
since the formulation of the optically thin limit 
is independent of the actual variation of K, 
with wave number, but depends only upon the 
area under the X,/P vs. o curve. Recall that 
the box model satisfies the correct area require- 
ment as given by equation (17). 

Band absorptance model 
A solution will now be obtained which 

accounts in an approximate manner for both 
the line structure and the wings of the band. 
This is accomplished by expressing the kernel 
for the integral equation in terms of the total 
band absorptance given by equation (14). The 
method of formulating the integral equation 
is somewhat analogous to that employed by 

Gille and Goody [l], while it constitutes an 
approximate kernel application of Wang’s 
formulation [4]. 

It will first be convenient to recast equation 
(1) in terms of the physical coordinate y, that is 

y=:, L=F, 
t 

z=- 
al a, Gl 

so that equations (1) and (5) yield 

exp[_4(y-zgdz 

-Y 

exp [-%(z- yj dz. (31) 

Again assuming that Planck’s function is in- 
dependent of wave number within the band, 
and noting from equation (13) that 

A’(y) = j r~,e+=~do 
Aa, 

then equations (3) and (31) yield 

qR = $ i [e&) - elacl A’[% - z)l d2 

- 3 f [e,,(z) - elmcl A’C& - Y)l do. (32) 

In that the correlation for the total band 
absorptance is in terms of the dimensionless 
path length a, it will be convenient to convert 
equation (32) from y to a. Note first, however, 
that from equation (15) 

~=c~py=spy 
A0 

while from equations (16a, 17, 18) 

214 SP 214s 214 _ 
i(=--y=-Icy=-z 

38 AU 38 38 (33) 

and thus u is an optical coordinate directly 
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related to that employed in the box model. 
With u,, = CiPL, and letting u’ be the dummy 
variable for y equation (33) becomes 

qR = 3 i [e&u’) - elooc] A’[% - u’)l du’ 

- 3 i” Ce,@? - e,,J A’@@ - u)].du’ (34) 
” 

where A’(u) denotes the derivative of A(u) with 

The dimensionless quantity cp, which was 
respect to u. 

introduced in the box model solution, will 
again be employed, and note from equations 
(15, 17,28) that 

emeCU - elm, _ emECU - elm0 
‘= QbAo - QIPS 

e&7 - elmc 
= Q/A&P ’ 

(35) 

Furthermore, the dimensionless band absorp- _ - 
tance A is defined by 2 = A/A,, and upon 
combining equations (4) and (34), the integral 
equation describing the present problem be- 
comes 

There appears to be considerable difficulty in 
evaluating equation (38), since there will always 
be an optically non-thick region in the band 
wings. A procedure employed in [9] to evaluate 
KR consists of assuming an Elsasser model, which 
replaces the band by equally spaced lines of 
equal intensity. However, this is simply an 
extension of the box model, and in fact reduces 
to the box model for B + co. Since no account 
is made of the wing regions of the band, and 
since the wing regions are of prime importance 
for large path lengths, this procedure is open 
to some question. 

;(2-$ I) =ijm(.)X[j(u-u’)]du’ 

0 

110 

- ; 

I 
rp(u’) A’[$@’ - u)] du’. (36) 

” 

The solution of equation (36) has been 
accomplished by the method of undetermined 
parameters. A polynomial solution for cp was 
assumed, and the constants evaluated by satisfy- 
ing the integral equation at equally spaced 
locations. Both quadratic and quartic solutions 
were utilized, with the two solutions yielding 
virtually identical results. 

Optically thick limit 
From Abu-Romia and Tien [9], the radiative 

flux for optically thick radiation is expressed as 

40 dT4 
qR= --- 

3KR dy 
(37) 

where kR is a Rosseland coefficient associated 
with the fundamental band and is defined by 

(38) 

AlO 

The flux qR as described by equation (37) is 
actually the flux within the wave number region 

On combining equations (4) and (37), integrat- 

of the band. Due to the symmetry of the present 

ing, and making use of the fact that temperature 

problem, however, there is no net flux outside 

continuity at the wall is achieved under optically 

the band. 

thick conditions, one has 

(39 

COMPARISON OF RESULTS 

For the sake of brevity, it will be sufficient 
for comparative purposes to compare centerline 
temperatures as predicted by the various spectral 
models ; that is, T, = T(J = L/2). Recall that 
both the box model and the band absorptance 
model describe the temperature profile in 
terms of the quantity cp defined by equation (35). 
It will thus be convenient to describe the 
centerline temperature, in terms of Planck’s 
function evaluated at the band center, by the 
dimensionless group 

cp 5 = e&J - e,(T,) 0 2 QPWJ . w9 
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The box model parameter i0 and the band 
absorptance parameter u. are related for carbon 
monoxide through equation (33). Results for 
yl(uo/2), as obtained from equation (29) for the 
box model and from the solution of equation 
(36) for the band absorptance model, are 
illustrated in Fig. 3. Furthermore, the optically 

0. . al 
I I I I 

04 I.0 lc loo I 

“&&L 

FIG. 3. Comparison of results for carbon monoxide. 

thin limit follows from equation (30) to be 

cp $! 2. 0 (41) 

Note that the band absorptance model 
approaches the correct optically thin limit, 
with the results becoming independent of the 
line structure parameter in this limit. This of 
course is consistent with the fact that the line 
structure of the band has no effect under 
optically thin conditions, with the radiative 
transfer process depending solely upon the 
area under the ICJP vs. wave number curve. 
As the path length u. is increased, the band 
absorptance results show a greater departure 
from the optically thin limit for small values of 
the line structure parameter #L This is consistent 
with previous discussion. For smaIl values of /I 
(low pressures), the maximum value of KJP 
will exceed that for higher pressures, and cor- 
respondingly, for increasing uo, optically non- 
thin conditions will fust occur for small fi values. 

The maximum influence of line structure 
exists for intermediate values of uo, while for 

large values of path length the band absorptance 
results again become insensitive to /3. This 
corresponds to the path length range for which 
the total band absorptance, as given by equation 
(14), reduces to the logarithmic asymptote x = 
In y and is thus independent of /3. As previously 
discussed, the physical implication is that the 
central portion of the band is opaque, with 
radiative transfer occurring solely within the 
wing regions. Edwards et al. [14] have pointed 
out that the wings possess a more continuous 
structure than the central portion of the band, 
with the consequent supression of the import- 
ance of line structure at large path lengths. 

With reference to the box model results, 
recall that the box model neglects line structure 
and thus is a large /I approximation. From 
Fig. 3 it is seen that the box model solution 
departs from the optically thin solution more 
slowly than its band absorptance counterpart 
(B = 1 + co). This is easily explained on physical 
grounds. In the central portion of the band the 
box model underpredicts the value of the spectral 
absorption coefficient (see Fig. 2) such that the 
box model will yield optically thin results for 
greater values of u. than will the band absorp- 
tance model. At large values of u. the box model 
overpredicts the centerline temperature due 
to the neglect of the band wings. For large 
path lengths the wing regions contribute pri- 
marily to radiative transfer. Since the box 
model neglects the wings, it underestimates the 
ability of the gas to transfer radiant energy for 
large u. values, and consequently overpredicts 
the centerline temperature. 

In regard to comparing the gray gas and 
optically thick solutions with the band absorp- 
tance solution, note that equations (21) and 
(39) describe the centerline temperature as 
T:, while T, is given in terms of Planck’s 
function for the band absorptance model. To 
express T, in a comparable form, it should be 
recalled that the present analyses are based 
on the assumption that K, is independent of 
temperature; that is, restriction has been made 
to small temperature differences. In line with 
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this, the linearizations 

T4 - T; N- 4T:(T - Tl) 

and 

e,c(T) - emcVd = (T - T) 

are applicable. On eliminating (T - Tl) from 
these two expressions, there is obtained 

(42) 

Through use of equation (42), it is possible 
to express (T: - Tt) in terms of &e/2). 
Specilically, from equation (35) this yields 

T; - T’: N 4T:Q 
PS(T,) (de,JdT),, TI ’ 

(43) 

such that equations (21) and (39) may be 
rephrased to yield results for 4&,/2). Note that 
this necessitates specifying not only the gas but 
also the wall temperature Tl. The band absorp- 
tance, gray gas, and optically thick solutions 
are compared in Figs. 4 and 5 for Tl = 1000°K 
and 2000°K respectively. 

-aBord obwPtoncc mad@ 

--- Rosrcbrd equatii 
----Gray qas, K-+ 

I I I I 
04 I.0 IO loo I 

&!?rL 
38 

FIG. 4. Comparison of results for carbon monoxide, 
& = 1000°K. 

It is seen that the gray gas solution is in 
poor agreement with the more realistic band 
absorptance solution, even in the optically 
thin limit. This disagreement in the thin limit 
is a consequence of two errors which are 

inherent in the gray gas analysis. The first is 
that the gray gas absorption coefficient has 
been assumed to be the Planck mean. This is 
correct only with regard to emission, whereas 
in the thin limit the correct mean absorption 
coefficient is the modified Planck mean. Second- 
ly, in the gray gas solution it has been assumed 
that rc,, is independent of temperature, and as 
previously discussed this is incorrect even for 
small temperature differences. 

- Bond drorptoncs model 
--- Rmselard equation 
----Gray pa. ‘-K~ 

FIG. 5. Comparison of results for carbon monoxide, 
q = 2000°K. 

Also illustrated in Figs. 4 and 5 are results 
based upon the optically thick (or Rosseland) 
equation applied to a single band. Values of 
the Rosseland coefficient KR for the CO funda- 
mental band were taken from [9], and the 
method of calculating this coefficient, employing 
the Elsasser model, was described previously. 

Presumably, the optically thick solution 
should describe the asymptotic behavior for 
large values of the path length uo. Note from 
Figs. 4 and 5, however, that the Rosseland 
equation curves have a considerably different 
slope than appears to be asymptotically achieved 
by the band absorptance model. The slope of 
the RossUnd curves actually coincides with 
that approached by the box model and gray 
gas solutions. Furthermore, the Rosseland 
results show a strong dependence upon the line 
structure parameter /I and this is not in accord 
with previous conclusions. 

These apparent shortcomings of the optically 
thick solution are evidently due to the fact 
that vibration-rotation bands can never be 
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optically thick over the entire spectral range 2. L. D. NICHOLS, Temperature profile in the entrance 

where radiative transfer is important. For region of an annular passage considering the effects of 

example, consider the limit fl+ co, such that 
turbulent convection and radiation, Znt. J. Heat Mass 

the variation KJP with wave number is the 
Tratqfer 8,589-608 (1965). 

3. S. DE SOTO and D. K. EDWARDS, Radiative emission and 

line-average value illustrated in Fig. 2. In the 
band wings, KJP approaches zero asymptotic- 
ally, so that for large values of u. the wings will 
constitute regions for which there will be a 
continuous transition from the opaque to the 
transparent limits. These wing regions wilh of 
course, be the sole wave number regions for 
which radiative transfer within the gas occurs, 
since the central portion of the band will be 
opaque. In other words, for large u, optically 
nonthick radiation will occur in the band wings, 
whereas in [9] it was necessary to neglect the 
wing regions in order to define a band Rosseland 
coefficient.* 

A final comment regarding the limit of large 
u. concerns the neglect of the first overtone 
band. This band, which has been neglected 
in the present work, will become important 
for large path lengths. Its inclusion, however, 
would not alter the conclusion concerning the 
applicability of the Rosseland equation to 
vibration-rotation bands. 
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R&un&L’objet de cette recherche est d’ktudier plusieurs mkthodes approchtes d’analyse du transport 
de chaleur par rayonnement infrarouge dans des gaz non gris et nonisothermes. Dans ce but, on a choisi 
un systbme physique trts simple sonsistant en un gaz compris entre deux plaques noires parallbles infinies 
ayant la mEme tempkrature uniforme. II existe une source (ou un puits) de chaleur uniforme dans le gaz. 
De plus, on se restreint aux gaz ayant une seule bande fondamentale de vibration-rotation, c’est-A-dire, 
aux gaz diatomiques. 

On trouve que pour des tpaisseurs optiques intermkdiaires, la structure des lignes de la bande de vibra- 
tion-rotation, peut avdir un effet important sur la distribution de tempkrature dans le gaz. Des p&visions 
bakes sur I’hypothkse du gaz gris conduisent g des grandes erreurs. On montre plus loin que l’on ne, 
peut pas appliquer le cas limite optiquement tpais B toute une bande de vibration-rotation, puisqu’il y 
aura toujours une rtgion non tpaisse optiquement dans les extrkmitks de la bande, et que de telles rkgions 

contribueront d’une faGon importante au processus de transport par rayonnement. 

Zusanunenfassung-Es werden verschiedene NBherungsverfahren zur Berechnung des Wkneiibergangs 
durch Strahlung in nicht-grauen und nicht isothermen Gasen untersucht. Ein sehr einfaches physikalischds. 
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System, namlich zwei parallele, unendlich ausgedehnte schwarze Platten gleicher Temperatur, zwischen 
denen sich das Gas befindet, wird zu Grunde gelegt. Im Gas befindet sich eine homogene Wirmequelle 
(oder Senke). Weiterhin werden die nberlegungen beschrlnkt auf Gase mit einer einzigen Grundschwin- 
gungs_Rotationsbande, d.h. auf zweiatomige Gase. 

Es ergibt sich, dass die Linienstruktur der Schwingungs-Rotationsbanden bei mittleren optischen 
Dicken einen betrtichtlichen Einfluss auf die Temperaturverteilung im Gas haben kann. Es wird gezeigt, 
dass Vorhersagen, die auf der annahme eines grauen Gases beruhen, sehr fehlerhaft sind. Ausserdem 
wird gezeigt, dass ,man die NHherung fur den optisch dicken Fall nicht fur die gesamte Schwingungs- 
Rotationsbande verwenden kann, weil in der Bande immer optisch nicht-dicke Bereiche sein werden, 

die erheblich zum Warmeiibergang durch Strahlung beitragen. 

AHaonqna-IIpenmeTord RaHHoro KccaenoBaHKR IisnKeTcn uayrerue paanswHvx npw- 
6~K~eHH~X~eTo~oBaHa~KaauH~paKpacHoro~yliKc~oroTennoo6~eHa~ KeaaoTepHnsecKKx 

cpenax HecepbIx raaos. C aTO# qenbIo 6bura BbI6paHa o=IeHb npocTaK (PKaweCKaK CKcTerda, 

CocTorrIqafI Ka raaa,aaKnro~eHHoro Me2iQy @IYMR 6eCKOHe9HbIMK napannenbHbIrdu qepfinmn 

KaoTepwiqecKKwi nnacTmHKardH c 0gKHaKoBoB TerdnepaTypoti. B raaoBoi3 cpene nlldeeTci3 

0;q~0p0~~bdi HcToqHnK (nnK CTOK) Tenna. Mccnegooeanwcb TonbKo raabi, Kmemaiie og~y 

OcHoBHynJ BKbpa~UOHHO-BpaIWlTeJIbRylO nonocy norno~eaKqT.e.~yxaTolrHue raau. 

YCTaHOBJIeHO, 'IT0 AJIf3 npOMeHcyTOYHblX ElHaqeHHit OlITHqeCKOii TOJIlJ@WIbl JIKHetiKaK 

CTpyKTypa KOJIe6aTeJIbHO-BpaIQaTeJlbHOfl nOJlOCbl nOrJlOllJeHUfi HOIKe aHaWfTeJlbH0 BnHRTb 

Ha pacnpefleleaxe TernepaTypnr B raae. IIoKaaaeo, s~o pacwrbr, 0cHoBaHHble Ha Aonyrqe- 

~Kux 0 cepoar raae, AaIoT donburKe omii6ttw. lJanee Ha npriacepax nonaaaxo, 4To npefieabtfo 
6onbuxae BHa4eKKFi OIITWIeCKOfl TOJI~HHH HeJIbeH npKMeHHTb KO BCeft BW~~K~KOHHO- 

BpaaaTeJlbHOti nOJlOCe,T.K. Ha KOHqaX nOJlOCbI BCerAa CyIIJeCTByIOT o6nacTn C HebOJIbIUHMK 

aHa~e~~KKuonT~~ecKo~TO~~~H~,KoTopbfe~llbe~T6o~b~oeaKa~eHKeB npoqeccenyvrororo 
TenJIOO6MeHa. 


